Modelling of spatio-temporal zero truncated patterns in infectious disease surveillance data
نویسندگان
چکیده
This paper is motivated by spatio-temporal pattern in the occurrence of Leishmaniasis in Afghanistan and the relatively high number of zero counts. We hold the view that correlations that arise from spatial and temporal sources are inherently distinct. Our method decouples these two sources of correlations, there are at least two advantages in taking this approach. First, it circumvents the need to inverting a large correlation matrix, which is a commonly encountered problem in spatio-temporal analyses. Second, it simplifies the modelling of complex relationships such as anisotropy, which would have been extremely difficult or impossible if spatio-temporal correlations were simultaneously considered. We identify three challenges in the modelling of a spatio-temporal process: (1) accommodation of covariances that arise from spatial and temporal sources; (2) choosing the correct covariance structure and (3) extending to situations where a covariance is not the natural measure of association. Moreover, because the data covers a period that overlaps with the US invasion of Afghanistan, the high number of zero counts may be the result of no disease incidence or lapse of data collection. To resolve this issue, a model truncated at zero built on a foundation of the generalized estimating equations was proposed.
منابع مشابه
Spatio-temporal analysis of infectious disease outbreaks in veterinary medicine: clusters, hotspots and foci.
Analysis of disease data that has an implicit spatio-temporal component (such as disease outbreaks, data generated by surveillance systems and specific hypothesis-based veterinary field research) is a foundation of veterinary epidemiology and preventive medicine. Components of this process include exploratory spatial data analysis (finding interesting patterns), visualisation (showing interesti...
متن کاملSpatio-temporal agent based simulation of COVID-19 disease and investigating the effect of vaccination (case study: Urmia)
Proper management of epidemic diseases such as Covid-19 is very important because of its effects on the economy, culture and society of nations. By applying various control strategies such as closing schools, restricting night traffic and mass vaccination program, the spread of this disease has been somewhat controlled but not completely stopped. The main goal of this research is to provide a f...
متن کاملExtraction of Disease Occurrence Patterns Using MiSTIC: Salmonellosis in Florida
Objective This work leverages spatio-temporal data mining (ST-DM), the MiSTIC (Mining Spatio-Temporally Invariant Cores)[1,6] method for infectious disease surveillance, by identifying a) Extent of spatial spread of disease core regions across populations-scale of disease prevalence b) Possible causes of the observed patterns-for better prediction, detection & management of infectious disease &...
متن کاملAssessment of Neonate's Congenital Hypothyroidism Pattern Using Poisson Spatio-temporal Model in Disease Mapping under the Bayesian Paradigm during 2011-18 in Guilan, Iran
Background: Congenital Hypothyroidism (CH) is one of the reasons for mental retardation and defective growth in neonates. It can be treated if it is diagnosed early. The congenital hypothyroidism can be diagnosed using newborn screening in the first days after birth. Disease mapping helps to identify high-risk areas of the disease. This study aimed to evaluate the pattern of CH using the Poisso...
متن کاملA Survey of Visual Traffic Surveillance Using Spatio-Temporal Analysis and Mining
The focus of this survey is on spatio-temporal data mining and database retrieval for visual traffic surveillance systems. In many traffic surveillance applications, such as incident detection, abnormal events detection, vehicle speed estimation, and traffic volume estimation, the data used for reasoning is really in the form of spatio-temporal data (e.g. vehicle trajectories). How to effective...
متن کامل